Муниципальное бюджетное общеобразовательное учреждение Зуринская средняя общеобразовательная школа имени С.М.Стрелкова

Ф.Н. Стрелкова

Принято на заседании педагогического Совета Протокол № 1 От 30 августа 2024 г.

Утверждаю

Директор MBOУ Зуринская COIII

2/ А.П.Чирков

(подпись)

Ф.И.О.

Приказ № 189

от 06 сентября 2024 г.

Печать ОУ

РАБОЧАЯ ПРОГРАММА

факультатива «Химия в задачах и упражнениях» 10 класс

Составитель: Макарова Наталья Петровна

Пояснительная записка.

Решение задач занимает в химическом образовании важное место, так как это один из приемов обучения, посредством которого обеспечивается более глубокое и полное усвоение учебного материала по предмету. Чтобы научиться химии, изучение теоретического материала должно сочетаться с систематическим использованием решения различных задач. В школьной программе существует эпизодическое включение расчетных задач в структуру урока, что снижает дидактическую роль количественных закономерностей, и может привести к поверхностным представлениям у учащихся о химизме процессов в природе, технике. Сознательное изучение основ химии немыслимо без понимания количественной стороны химических процессов.

Решение задач содействует конкретизации и упрочению знаний, развивает навыки самостоятельной работы, служит закреплению в памяти учащихся химических законов, теорий и важнейших понятий. Выполнение задач расширяет кругозор учащихся, позволяет устанавливать связи между явлениями, между причиной и следствием, развивает умение мыслить логически, воспитывает волю к преодолению трудностей. Умение решать задачи, является одним из показателей уровня развития химического мышления учащихся, глубины усвоения ими учебного материала.

Курс «Химия в задачах и упражнениях» предназначен для изучения в 10 классе, рассчитан на 34 часа. Курс основан на параллельном изучении теоретических основ органической химии в урочное время.

Цель курса: изучить основные способы решения задач по органической химии.

Задачи курса:

- обобщить и систематизировать знания учащихся по химии;
- формировать и развивать навыки исследовательской деятельности;
- развивать у учащихся логическое мышление, кругозор, память; учебно-коммуникативные умения;
- развивать умения использовать полученные знания для решения практических проблем, тем самым связывая обучение с жизнью и деятельностью человека.

Формы обучения: индивидуальная, групповая (парная) работа.

Ожидаемые результаты обучения:

После изучения данного курса учащиеся должны знать:

- химическую терминологию;
- основные классы органических веществ;
- основные физические величины, применяемые для решения задач;
- алгоритмы решения задач;
- основные формулы и законы, по которым проводятся расчеты.

На основе полученных знаний учащиеся должны уметь:

- устанавливать генетические связи между классами органических веществ;
- решать расчетные задачи различных типов;
- представлять сущность описанных в задаче процессов и объяснять механизмы протекания химических реакций;
- работать самостоятельно и в группах;
- пользоваться справочной литературой по химии для выбора количественных величин, необходимых для решения задач.

Основное содержание программы:

Тема 1: Введение (1 час):

Знакомство с целями и задачами курса, его структурой. Основные законы и понятия химии.

<u>Тема 2:</u>Повторение решения основных типов задач по неорганической химии (4 часа):

Изучение основных физические величины, применяемые для решения задач.

Использование алгоритмов решения задач по химическим формулам, задач по химическим уравнениям с использованием веществ в виде растворов, задач на определенные выхода продукта от теоретически возможного, задач на определение массы или объема продукта реакции, если одно из исходных веществ дано в избытке, задачи на определение массы или объема продукта реакции, если исходное вещество содержит примеси.

Решение задач по органической химии

Углеводороды (23 часа)

Тема 3:Предельные углеводороды (9 часов)

Составление названий веществ по систематической номенклатуре. Составление изомеров и гомологов веществ.

Решение задач на вывод формулы органических соединений на основании массовых долей элементов и плотности соединения.

Решение задач на вывод формул органических веществ по продуктам их сгорания.

Задачи на определение массы или объема продукта реакции, если одно из исходных веществ дано в избытке.

Задачи на определение массы или объема продукта реакции, если исходное вещество содержит примеси.

Задачи на выход продукта реакции.

Тема4: Непредельные углеводороды (10 часов)

Составление названий веществ по систематической номенклатуре. Составление изомеров и гомологов веществ.

Решение задач на вывод формулы органических соединений на основании массовых долей элементов и плотности соединения.

Решение задач на вывод формул органических веществ по продуктам их сгорания.

Задачи на определение массы или объема продукта реакции, если одно из исходных веществ дано в избытке.

Задачи на определение массы или объема продукта реакции, если исходное вещество содержит примеси. Качественные задачи.

Задачи на выход продукта реакции.

<u>Тема 5:</u> Ароматические углеводороды (4 часа)

Составление названий веществ по систематической номенклатуре. Составление изомеров и гомологов веществ.

Решение задач на вывод формул органических веществ по продуктам их сгорания.

Задачи на определение массы или объема продукта реакции, если одно из исходных веществ дано в избытке.

Задачи на выход продукта реакции.

<u>Тема 6:</u>Природные источники углеводородов (1 час)

Задачи на выход продукта реакции.

<u>Тема 7:</u>Решение комбинированных задач (3 часа)

Генетическую связь между классами органических и неорганических веществ. Выявление в условиях задачи цепочки превращений и использование их в решении расчетных задач. Решение комбинированных задач по изученным темам органической химии. Итоговая защита(2 часа):

Выполнение учащимися итоговой работы по данному курсу.

Календарно-тематическое планирование

π/	Наименование тем	Всего	В том числе		Формы контроля	
П	курса	часов	лекция	практикум		
1	Вводное занятие. Знакомство с целями и задачами курса, его структурой. Основные понятия и законы химии.	1	1ч		конспект	
2	Повторение решения основных типов задач по неорганической химии	4				
2. 1	Решение задач по химическим формулам и по уравнениям химических реакций с использованием веществ в виде растворов.		0,5ч	0,5 ч	алгоритм, решенные задачи	
2. 2	Решение задач на определение массы или объема продукта реакции, если одно из исходных веществ дано в избытке.		0,5ч	0,5 ч	алгоритм, решенные задачи	
2. 3	Решение задач на определенные выхода продукта от теоретически возможного		0,5ч	0,5 ч	алгоритм, решенные задачи	
2. 4	Решение задач на определение массы или объема продукта реакции, если исходное вещество содержит примеси.	ГАНИЧЕС	0,5ч	0,5 ч	алгоритм, решенные задачи	
	РЕШЕНИЕ ЗАДАЧ ПО ОГАНИЧЕСКОЙ ХИМИИ УГЛЕВОДОРОДЫ – 23 ЧАСА					
3.	Предельные углеводороды	<u>9</u>				

3.	Номенклатура и		0,5ч	0,5 ч	алгоритм
1	изомерия органических		ŕ		1
	веществ.				
3.	Номенклатура и			1ч	самостоятельная
2	изомерия органических				работа
	веществ.				
3.	Решение задач на вывод		0,5ч	0,5 ч	алгоритм,
3	формулы органических		,		решенные задачи
	соединений на основании				
	массовых долей				
	элементов и плотности				
	соединения.				
	Решение задач на вывод		0,5ч	0,5 ч	алгоритм,
3.	формул органических				решенные задачи
4	веществ по продуктам				
	их сгорания.				
3.	Решение задач на вывод			1 ч	самостоятельная
5	формул органических				работа, работа в
	веществ по продуктам				парах
	их сгорания.				
3.	Задачи на определение		0,5ч	0,5 ч	алгоритм,
6	массы или объема				решенные задачи
	продукта реакции, если				
	одно из исходных				
	веществ дано в избытке.				
3.	Задачи на определение		0,5ч	0,5 ч	алгоритм,
7	массы или объема				решенные задачи
	продукта реакции, если				
	исходное вещество				
	содержит примеси.				
3.	Задачи на выход		0,5ч	0,5 ч	алгоритм,
8	продукта реакции.				решенные задачи
3.	Итоговое занятие			1ч	контрольная
9					работа №1
4.	Непредельные	10			
	углеводороды				
4.	Номенклатура и		0,5ч	0,5 ч	алгоритм
1	изомерия органических				
	веществ.				
4.	Решение задач на вывод			1ч	алгоритм,
2	формулы органических				решенные задачи,
	соединений на основании				самостоятельная
	массовых долей				работа
	элементов и плотности				
	соединения.				

4.	Решение задач на вывод			1ч	алгоритм,
3	формул органических				решенные задачи,
	веществ по продуктам				самостоятельная
	их сгорания.				работа
4.	Задачи на определение		0,5ч	0,5 ч	алгоритм,
4	массы или объема		0,01	0,5 1	решенные задачи
-	продукта реакции, если				решения зада н
	одно из исходных				
	веществ дано в избытке.				
4.	Задачи на определение		0,5ч	0,5 ч	алгоритм,
5	массы или объема			3,5	решенные задачи
	продукта реакции, если				
	исходное вещество				
	содержит примеси.				
4.	Задачи на выход		0,54	0,5 ч	алгоритм,
6	продукта реакции.				решенные задачи
4.	Номенклатура и			1ч	алгоритм, работа в
7	изомерия органических				группах
	веществ.				
4.	Задачи на определение		0,5ч	0,5 ч	алгоритм,
8	массы или объема				решенные задачи
	продукта реакции, если				
	одно из исходных				
	веществ дано в избытке.				
4.	Решение качественных		0,5ч	0,5 ч	алгоритм,
9	задач				решенные задачи
4.	Итоговое занятие			1ч	контрольная
10					работа №2
5.	Ароматическиеуглеводо	4			
	роды				
5.	Номенклатура и		0,5ч	0,5 ч	алгоритм,
1	изомерия органических				решенные задачи
	веществ.				
5.	Решение задач на вывод			1ч	решенные задачи
2	формул органических				
	веществ по продуктам				
	их сгорания.				
5.	Задачи на определение			1ч	решенные задачи
3	массы или объема				
	продукта реакции, если				
	одно из исходных				
	веществ дано в избытке.				
5.	Задачи на выход			1ч	решенные задачи
4	продукта реакции.				
6.	Природные источники	1			

	углеводородов			
	Задачи на выход		1	ч решенные задачи
	продукта реакции.			
7.	Решение	3		
	комбинированных			
	задач			
7.	Задачи на генетическую		1	ч цепочки
1	связь классов			превращений,
	органических			решенные задачи
	соединений			
7.	Решение		1	ч решенные задачи
2	комбинированных задач			
7.	Решение		1 9	ас решенные задачи
3	комбинированных задач			
	Итоговое занятие	2		Итоговая работа
				по курсу
	Итого: 34 часа			

Учебно-методическая литература

- 1. Новошинский И.И., Новошинская Н.С. Типы химических задач и способы их решения. М.: «ОНИКС 21 век» «Мир и Образование», 2004, 176.
- 2. Хомченко И.Г. Сборник задач и упражнений по химии для средней школы. М.: РИА «Новая волна», 2007, 214с.
- 3. Кузьменко Н.Е., Еремин В.В., Попков В.А. Химия для школьников старших классов и поступающих в вузы. М.: Дрофа, 1997, 528 с.
- 4. Кузьменко Н.Е., Еремин В.В. 2400 задач по химии для школьников и поступающих в вузы. М.: Дрофа, 1999, 560 с.
- 5. Хомченко Г.П.Химия для поступающих в ВУЗы. М.: Высшая школа, 1999, 447с
- 6. Шамова М.О. Учимся решать расчетные задачи по химии: технология и алгоритмы решения.—М.: Школа-Пресс, 2006.
- 7. Химия. Новые задания ЕГЭ -2014:определение неорганических и органических веществ (задание В6):учебно-методическое пособие/под ред. В.Н. Доронькина. -Ростов н/Д: Легион, 2013.-110с.
- 8. Корощенко А.С. Контроль знаний по органической химии: 9-11 кл. М.: Гуманит. изд. центр ВЛАДОС, 2003.-112с.

1. Осуществите цепочку превращений и назовите вещества:

$$C \rightarrow CH_4 \rightarrow CH_3C1 \rightarrow C_2H_6$$
 \downarrow
 $CO2$

- 2. Найдите молекулярную формулу углеводорода, если массовая доля углерода составляет 75%; относительная плотность углеводорода по азоту равна 0,572 (М(N₂)=28г/моль)
- 3. При полном сгорании 3 г углеводорода получилось 4,48 л. (н.у.) углекислого газа и 5,4 г. воды. Относительная плотность по воздуху равна 1,03. Выведите формулу углеводорода. (C_2H_6)
- 4. Какой объем метана (н.у.) выделится при взаимодействии 10 г карбида алюминия (Al_4C_3) с 10 г воды?
- 5. Определить массу образца технического углерода, содержащего 3% примесей, необходимого для получения 67,2 л (н.у.) метана.

Контрольная работа №2

- 1.Для3-метилбутина 1 запишите не менее трех формул изомеров. Дайте названия каждого вещества, укажите виды изомерии.
- 2. Найдите молекулярную формулу алкина, массовая доля углерода в котором составляет 90%. Относительная плотность его по водороду равна 20.
- 3. Какой объем оксида углерода (IV) образуется при взаимодействии ацетилена объемом 6 л и кислорода объемом 18 л? (12 л).
- 4. Карбид кальция обработан избытком воды. Выделившийся газ занял объем 4,48 л (н.у.). Рассчитайте, какой объем 20%-ной соляной кислоты плотностью 1,10 г/мл пойдет на полную нейтрализацию щелочи, образовавшейся из карбида кальция.

Итоговая контрольная работа за курс 10 класса

1. Осуществите цепочку превращений и назовите вещества:

$$C_2H_6 \rightarrow C_2H_4 \rightarrow C_2H_2 \rightarrow C_6H_6 \rightarrow C_6H_6Cl_6$$
.

- 2. Выведите формулу вещества, содержащего 85,7% углерода и 14,3% водорода. Относительная плотность паров этого вещества по водороду равна 28. (С4Н8)
- 3. При полном сгорании 4,4 г. углеводорода получилось 6,72 л. (н.у.) углекислого газа и 7,2 г. воды. Относительная плотность по воздуху равна 1,517. Выведите формулу углеводорода. (C_3H_8)
- 4. Из ацетилена объемом 10,08 л (н.у.) был получен бензол. Массовая доля выхода продукта составила 70 %. Определите массу полученного бензола. (8,19 г).
- 5. При нагревании иодметана массой 2,84 г с 0,69 г металлического натрия получен этан, объем которого при нормальных условиях составил 179,2 мл. Определите выход продукта реакции. (Ответ 80%).
- 6. Какая масса бензола образуется из 128г ацетилена, содержащего 12% примесей?
- 7. В трех емкостях находятся этан, этен и этин. Как распознать, где какой газ находится. Напишите уравнения соответствующих реакций.